Measuring Systemic Risk

Acharya, Pedersen, Philippon, and Richardson

Presented by

Lasse H. Pedersen

New York University, Copenhagen Business School, CEPR, NBER, and AQR Capital Management

Motivation

- Systemic risk can be defined as:
 - When the distress of financial institutions has externalities that disrupt the real economy
- > The challenge is:
 - To use <u>economic theory</u> to find a measure of systemic risk
 - That is useful in <u>managing</u> the systemic risk
 - And asses its <u>empirical success</u>

Systemic Risk vs. Total Risk

- > Traditional regulation of financial sector: Firm-level risk management
 - <u>Goal</u>: Limit risk of collapse of each bank seen in isolation
 - <u>Requirement</u>: Detailed knowledge of activities inside the firm
- ➢ We advocate in addition: Systemic approach
 - <u>Goal</u>: Limit risk of collapse of the system
 - <u>Requirement</u>: Understand risks and externalities across firms

Main Results: Theory

- Each financial institution's *contribution* to systemic crisis can <u>measured</u> as its systemic expected shortfall (SES):
 - SES = expected capital shortfall, conditional on a future crisis
- ➤ A financial institution's SES <u>increases in</u>:
 - its own leverage and risk
 - the system's leverage and risk
 - the tail dependence between the institution and the system
 - the severity of the externality from a systemic crisis
- ➤ <u>Managing</u> systemic risk:
 - Incentives can be aligned by imposing a tax or mandatory insurance based SES, adjusted for the cost of capital

Main Results: Empirical

- Empirical methodology:
 - we provide a very simple way of estimating SES
- Institutions' ex-ante SESs
 - predict their losses during the subprime crisis
 - with more explanatory power than measures of idiosyncratic risk
- > SES in the cross-section:
 - higher for securities dealers and brokers every year 1963-2008
 - higher for larger institutions that tend to be more levered
- > SES in the time series:
 - higher during periods of macroeconomic stress, especially for securities dealers and brokers

Comparison to Other Measures of Systemic Risk: I

Conventional wisdom (e.g., most other papers):

Systemic risk = what would happen if bank X failed?

– E.g., what crucial infrastructure is operated by bank X? (triparty repo, payment system, etc.)

➢ <u>Our view</u>:

Systemic risk = too little aggregate capital in the financial system

- Too little capital inhibits intermediation and credit provision
- A failed bank with crucial infrastructure can be taken over if there is enough capital in the system
- Example: Lehman vs. Barings

Comparison to Other Measures of Systemic Risk: II

- ➢ How to regulate based on the systemic risk measure?
 - \blacksquare We show that taxing based on SES implies that banks internalize externalities
 - Taxing based on "crucial infrastructure" does not work since infrastructure crucial no matter how well capitalized
- In case of tax, how to translate into right units? E.g., how to scale wrt. size of institution?
 We show that SES is scaled in meaningful units
 - Example, consider these three firms:
 - Firm A = Citibank
 - Firm B = 1 share of Citibank
 - Firm C = 1 share of Citibank + \$1 Trillion worth of Treasuries
 - \blacksquare We show that SES taxes each case consistently
 - Other measure of systemic risk (e.g. based on "connections") get this wrong
 - Same tax in dollars for A and B, or
 - Much higher tax for C than B
- ➢ How to handle if institutions merge or split up?
 - \blacksquare We show that SES handles this immediately

Related Literature

- Incentive to take correlated risk
 - Acharya (2001, 2009), Acharya and Yorulmazer (2007)
- Externalities
 - Liquidity spirals (Brunnermeier and Pedersen (2009), Pedersen (2009))
 - Bank runs (Diamond and Dybvig (1983), Allen and Gale)
 - Debt market freezes (Acharya, Gale, and Yorulmazer (08), He and Xiong (2009))
 - Tightening risk management (Garleanu and Pedersen (2007))
- Contingent claims analysis
 - Lehar (2005), Gray, Merton, and Bodie (2008), Gray and Jobst (2009)
- Statistical measures:
 - Huang, Zhou, and Zhu (2009), Adrian and Brunnermeier (2009)
- > Other proposals
 - Kashyap, Rajan, and Stein (2008), Wall (1989), Doherty and Harrington (1997), Flannery (2005), squam lake, NYU book (chapter 13), ...

Managing Risk Within and Across Banks

- Standard measures of risk within banks:
 - Value at risk: $Pr(R \leq -VaR) = \alpha$
 - Expected shortfall: $ES = -E(R | R \le -VaR)$
- > Banks consists of several units i=1,..., I of size y_i :
 - Return of bank is: $R = \sum_i y_i r_i$
 - Expected shortfall: $ES = -\sum_i y_i E(r_i | R \le -VaR)$
- ➤ Risk <u>contribution</u> of unit *i*: Marginal expected shortfall (MES) $MES^{i} := \frac{\partial ES}{\partial y_{i}} = -E[r_{i} | R \leq -VaR]$
- We can re-interpret this as each bank's contributions to the risk of overall banking system: The loss of bank *i* when overall banking is in trouble
- Question: what is the <u>economic rationale</u> for looking at these measures?

Economic Model

- \blacktriangleright "Banks" b=1,...,B choose at time 0
 - initial capital w_0
 - exposures $x = (x_1, ..., x_S)$ to all assets, which yield returns $r = (r_1, ..., r_S)$
- Maximize their objective function

$$E_0\left(u(w_1^b \cdot 1_{(w_1^b > 0)})\right) - c(w_0^b + t^b - \overline{w}_0^b)$$

- ➢ Given
 - cost of raising capital c
 - tax t^b
 - the evolution of capital

$$w_1^b = w_0^b + r \cdot x^b$$

Economic Model, continued

- Regulator cares about
 - aggregate outcome, including
 - externality, proportional to *e*
 - times the aggregate bank capital shortfall below cutoff
 - insured default losses with the government cost of capital c^g

$$E_{0}\sum_{b=1}^{B}\left\{u(w_{1}^{b}\cdot 1_{(w_{1}^{b}>0)})-c(w_{0}^{b}+t^{b}-\overline{w}_{0}^{b})+c^{g}(w_{1}^{b}\cdot 1_{(w_{1}^{b}<0)}+t^{b})\right\}+eE_{0}\left[(W_{1}-\overline{W})\cdot 1_{(w_{1}<\overline{w})}\right]$$

Economic Model - Results

- Without government intervention,
 - Banks choose leverage level and exposures $x=(x_1,...,x_S)$ with a risk level higher than socially optimal.
- > To correct this, government can charge a tax based on two components:

$$ES^{i} \equiv -E\left[w_{1}^{i} \mid w_{1}^{i} < 0\right] \qquad SES^{i} \equiv E\left[za^{i} - w_{1}^{i} \mid W_{1} < zA\right]$$
$$\tau^{i} = \frac{\alpha^{i}g}{c} \cdot Pr(w_{1}^{i} < 0) \cdot ES^{i} + \frac{e}{c} \cdot Pr(W_{1} < zA) \cdot SES^{i} \cdot$$

 In our model, sufficient metrics of systemic risk contributions available to design optimal taxation (a normative benchmark)

Efficient Regulation

- ➤ Tax system with <u>two components</u>
- Default Expected Shortfall (DES):
 - The bank's expected losses upon default
 - Analogous to the FDIC insurance premium.
 - Justified by government guarantees on deposits and related cost (g).
- Systemic Expected Shortfall (SES):
 - The bank's expected under-capitalization in a crisis
 - Expected contribution of bank to the aggregate shortfall of capital during a crisis.
 - Justified by the externality (*e*).

Systemic Expected Shortfall

- ➤ A bank's SES is larger if
 - the externality is more severe (e),
 - systemic under-capitalization is more likely $(Pr[W_1 < W^*])$
 - the bank takes a larger exposure (x_s) in an asset *s* that experiences loses when other banks are in trouble
 - the bank is more leveraged (w_0)
- ➢ In our empirical work, we focus on the cross-sectional part of SES, taking as given (i) the size of externality or the level of tax; (ii) the likelihood of systemic crisis, the time-series part

Empirical Methodology

➤ MES:

- Very simple non-parametric estimation:
 - find the 5% worst days for the market
 - compute each institution's return on these days
- Parametric
- ➢ SES:
 - Consider both MES and Leverage
- > Data: CRSP and COMPUSTAT

MES Predicts the Stress Tests

Acharya, Pedersen, Philippon, and Richardson

MES Predicts Realized Equity Returns During the Crisis 2007-08

NYU Stern VLAB: <u>Real-Time Systemic Risk Rankings</u>

- Directed by Rob Engle
- We have introduced a page providing estimates of risk for the 102 largest US Financial firms.
- NYU Stern Systemic Risk Ranking: Risk is estimated both for the firm itself and for its contribution to risk in the system.
- This is updated weekly/daily to allow regulators, practitioners and academics to see early warnings of system risks.
- Extend to European and Australasian firms: Collaboration with Universite de Lausanne and Australian Graduate School in Sydney

Systemic Risk Rankings for 2011-04-20 🗹 (MES is equity loss for a 2% daily market decline)

Institution	<u>SRISK %</u>	<u>RNK</u>	SRISK (\$m)	MES	Beta	Cor	Vol	Lvg	MV
Bank Of America	20.7%	1	122,668	3.57	1.19	0.55	27.4	17.46	124186.6
JP Morgan Chase	16.3%	2	96,512	3.35	1.35	0.70	24.3	12.37	177505.2
Citigroup	12.9%	3	76,697	2.59	0.91	0.58	19.8	14.33	133071.9
Morgan Stanley	7.8%	4	46,069	3.56	1.36	0.70	2 4.4	19.44	40248.3
MetLife	5.9%	5	35,043	3.01	1.16	0.63	23.0	15.74	46258.0
Wells Fargo	5.2%	6	31,170	3.27	1.19	0.61	24.7	8.31	151878.7
Goldman Sachs	5.1%	7	30,370	2.99	1.12	0.58	24.4	10.74	85493.1
Prudential Financial	4.9%	8	29,048	3.21	1.43	0.72	25.0	18.12	29612.0
American Internation Group	4.8%	9	28,707	3.80	1.07	0.46	29.4	10.80	58123.8
Hartford Financial Services	3.1%	10	18,649	2.96	1.20	0.55	27.2	25.66	12087.9

Did Our Method Predict Well?

- > Eight out of top ten failed or nearly failed in the crisis
 - Morgan Stanley, Merrill Lynch, Goldman Sachs, Fannie Mae, Freddie Mac, Citigroup, Lehman Bros, J.P. Morgan Chase, Bear Stearns, Met Life.

Implementation: Our Policy Proposal

- > SES signals institutions likely to contribute to aggregate crises
- > Three ways to limit systemic risk using our measure
 - 1. Systemic Capital Requirement
 - Capital requirement proportional to estimated systemic risk
 - 2. <u>Systemic Fees</u> (FDIC-style)
 - Fees proportional to estimated systemic risk
 - Create systemic fund
 - 3. <u>Private/public systemic insurance</u>

Our Systemic Insurance Proposal

- Compulsory insurance against own losses during crisis
 - Payment goes to systemic fund, not the bank itself
 - Insurance from government, prices from the market
 - Say 5 cents from private; 95 cents from the government
 - Analogy to terrorism reinsurance by the government (TRIA, 2002)
- Advantages of private/public proposal
 - A market-based estimate of the contribution to crises and externalities
 - Private sector has incentives to be forward looking
 - Gives bank an incentive to be less systemic and more transparent:
 - to lower their insurance payments

Conclusion: Systemic Risk

- Economic model of systemic risk gives rise to SES
- Systemic expected shortfall (SES)
 - Measures each financial institution's *contribution* to systemic crisis
 - Increases in: leverage, risk, comovement, tail dependence
 - An SES tax/insurance incentivizes banks to contribute less to crisis
- ➤ Empirically
 - Ex ante SES predicts ex post crisis loses
 - We analyze its cross-sectional and time series properties